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What is needed to define an optimal pairwise alignment?

I A scoring function, d(x , y), giving the score of a column of any letter x
and y . A typical scoring function could be

d(x , y) =


p if x = y

g if x = − or y = −
n otherwise

.

Here, p, is called a match score, n, a mismatch score, and g a gap penalty.

I An alignment approach. If we want to find an optimal alignment of the
full length sequences, we are searching a global alignment approach. If we
search the highest scoring stretch of an alignment, you should use a local
alignment approach.You can also use a semi-global alignment, searching for
an optimal alignment, with the exception for any overshooting sequence
terminals.
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Needleman-Wunsch (global alignment)

Given two sequences a1, . . . , aN and b1, . . . , bM , a scoring function d(x,y), we
can find an optimal global alignment by investigating the dynamic programming
matrix of size (N+1,M+1), defined by

S0,0 =0,

Si ,0 =d(x ,−) · i for all i ,
S0,j =d(−, y) · j for all j

Si ,j = max


Si−1,j−1 +d(ai , bj)

Si−1,j +d(ai ,−)

Si ,j−1 +d(−, bj)

The score of an optimal
alignment is SN,M .
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Example of Needleman-Wunsch (global alignment)

Align a =GAC, b =ACG, using d(x , y) =

{
1 if x = y

−1 otherwise
.

-

G

A

C

- A C G

0

-1

-2

-3

-1 -2 -3

S0,0 =0,

Si ,0 = − 1 · i for all i ,
S0,j = − 1 · j for all j

3 / 19



Example of Needleman-Wunsch (global alignment)

Align a =GAC, b =ACG, using d(x , y) =

{
1 if x = y

−1 otherwise
.

-

G

A

C

- A C G

0

-1

-2

-3

-1 -2 -3

-1
S1,1 = max
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S3,3 = max
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Example of Needleman-Wunsch (global alignment)

Align a =GAC, b =ACG, using d(x , y) =

{
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−1 otherwise
.
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Optimal score given by S3,3 = 0.

An optimal alignment can be found by back
tracing (-,G), (C,C), (A,A), (G,-) i.e.

GAC-

-ACG
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Smith-Waterman (local alignment)

Given two sequences a1, . . . , aN and b1, . . . , bM , a scoring function d(x,y), we
can find an optimal local alignment by investigating the dynamic programming
matrix of size (N+1,M+1), defined by

S0,0 =0,

Si ,0 =0 for all i ,

S0,j =0 for all j

Si ,j = max


Si−1,j−1 +d(ai , bj)

Si−1,j +d(ai ,−)

Si ,j−1 +d(−, bj)

0

The score of an optimal
alignment is max

i ,j
Si ,j
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Example of Smith-Waterman (local alignment)
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Example of Smith-Waterman (local alignment)

Align a =GAC, b =ACG, using d(x , y) =

{
1 if x = y

−1 otherwise
.

-

G

A

C

- A C G

0

0

0

0
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0 2 1

Optimal score given by max
i ,j

Si ,j = 2.

An optimal alignment can be found by back
tracing (C,C), (A,A) i.e.

AC

AC
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Semi-global alignment

Given two sequences a1, . . . , aN and b1, . . . , bM , a scoring function d(x,y), we
can find an optimal semi-global alignment by investigating the dynamic
programming matrix of size (N+1,M+1), defined by

S0,0 =0,

Si ,0 =0 for all i ,

S0,j =0 for all j

Si ,j = max


Si−1,j−1 +d(ai , bj)

Si−1,j +d(ai ,−)

Si ,j−1 +d(−, bj)

The score of an optimal
alignment is
max(max

i
Si ,M ,max

j
SN,j)
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Thanks!
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